Experimental evaluation of sensitivity and non-linearity in polysilicon piezoresistive pressure sensors with different diaphragm sizes

2016 
MEMS-based piezoresistive pressure sensors are widely popular due to advantages such as small size, low cost, simple fabrication, and DC output. In this work, the design simulation, fabrication process, and characterization of four pressure sensors with square diaphragms of edge-length 1,060, 1,280, 1,480, and 1,690 µm are reported. Several design principles such as appropriate boundary condition, piezoresistor placement, and fracture stress are considered in the design phase. The sensors have novel shaped polysilicon piezoresistors and equal diaphragm thickness of 50 µm. The sensors are fabricated simultaneously by putting the different designs on the same mask set so that the best design can be determined after characterization. The uncompensated and unamplified output response of the different sensors are reported at three temperatures (?5, 25 and 55 °C). Out of the four sensors with different diaphragm sizes, the sensor with a diaphragm edge length of 1,280 μm is found to have optimum characteristics. For the diaphragm with edge-length of 1,280 µm, in the pressure range of 0---30 Bar, sensitivity of 3.35---3.73 mV/Bar, non-linearity of <0.3 %, and hysteresis of <0.1 % are obtained. The different sensors can be used in the specified pressure range for suitable applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    22
    Citations
    NaN
    KQI
    []