Plasmonic nanoprobes for in vivo multimodal sensing and bioimaging of microRNA within plants

2019 
Monitoring gene expression within whole plants is critical for many applications ranging from plant biology to agricultural biotechnology and biofuel development; however, no method currently exists for in vivo monitoring of genomic targets in plant systems without requiring sample extraction. Herein, we report a unique multimodal method based on plasmonic nanoprobes capable of in vivo imaging and biosensing of microRNA biotargets within whole plant leaves by integrating three different and complementary techniques: surface-enhanced Raman scattering (SERS), X-ray fluorescence (XRF), and plasmonics-enhanced two-photon luminescence (TPL). The method developed uses plasmonic nanostars, which not only provide large Raman signal enhancement but also allow for localization and quantification by XRF and plasmonics-enhanced TPL, owing to gold content and high two-photon luminescence cross sections. Our method uses inverse molecular sentinel nanoprobes for SERS bioimaging of microRNA within Arabidopsis thaliana le...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    21
    Citations
    NaN
    KQI
    []