Multi-Phase Smart Relaying and Cooperative Jamming in Secure Cognitive Radio Networks

2016 
In this paper we investigate cooperative secure communications in a four-node cognitive radio network where the secondary receiver is treated as a potential eavesdropper with respect to the primary transmission. The secondary user is allowed to transmit his own signals under the condition that the primary user's secrecy rate and transmission scheme are intact. Under this setting we derive the secondary user's achievable rates and the related constraints to guarantee the primary user's weak secrecy rate, when Gelfand-Pinsker coding is used at the secondary transmitter. In addition, we propose a multi-phase transmission scheme to include 1) the phases of the clean relaying with cooperative jamming and 2) the latency to successfully decode the primary message at the secondary transmitter. A capacity upper bound for the secondary user is also derived. Numerical results show that: 1) the proposed scheme can outperform the traditional ones by properly selecting the secondary user's parameters of different transmission schemes according to the relative positions of the nodes; 2) the derived capacity upper bound is close to the secondary user's achievable rate within 0.3 bits/channel use, especially when the secondary transmitter/receiver is far/close enough to the primary receiver/transmitter, respectively. Thereby, a smart secondary transmitter is able to adapt its relaying and cooperative jamming to guarantee primary secrecy rates and to transmit its own data at the same time from relevant geometric positions.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []