language-icon Old Web
English
Sign In

Cognitive radio

A cognitive radio (CR) is a radio that can be programmed and configured dynamically to use the best wireless channels in its vicinity to avoid user interference and congestion. Such a radio automatically detects available channels in wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management.The point in which wireless personal digital assistants (PDAs) and the related networks are sufficiently computationally intelligent about radio resources and related computer-to-computer communications to detect user communications needs as a function of use context, and to provide radio resources and wireless services most appropriate to those needs. A cognitive radio (CR) is a radio that can be programmed and configured dynamically to use the best wireless channels in its vicinity to avoid user interference and congestion. Such a radio automatically detects available channels in wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management. In response to the operator's commands, the cognitive engine is capable of configuring radio-system parameters. These parameters include 'waveform, protocol, operating frequency, and networking'. This functions as an autonomous unit in the communications environment, exchanging information about the environment with the networks it accesses and other cognitive radios (CRs). A CR 'monitors its own performance continuously', in addition to 'reading the radio's outputs'; it then uses this information to 'determine the RF environment, channel conditions, link performance, etc.', and adjusts the 'radio's settings to deliver the required quality of service subject to an appropriate combination of user requirements, operational limitations, and regulatory constraints'. Some 'smart radio' proposals combine wireless mesh network—dynamically changing the path messages take between two given nodes using cooperative diversity; cognitive radio—dynamically changing the frequency band used by messages between two consecutive nodes on the path; and software-defined radio—dynamically changing the protocol used by message between two consecutive nodes. J. H. Snider, Lawrence Lessig, David Weinberger, and others say that low power 'smart' radio is inherently superior to standard broadcast radio. The concept of cognitive radio was first proposed by Joseph Mitola III in a seminar at KTH (the Royal Institute of Technology in Stockholm) in 1998 and published in an article by Mitola and Gerald Q. Maguire, Jr. in 1999. It was a novel approach in wireless communications, which Mitola later described as: Cognitive radio is considered as a goal towards which a software-defined radio platform should evolve: a fully reconfigurable wireless transceiver which automatically adapts its communication parameters to network and user demands. Traditional regulatory structures have been built for an analog model and are not optimized for cognitive radio. Regulatory bodies in the world (including the Federal Communications Commission in the United States and Ofcom in the United Kingdom) as well as different independent measurement campaigns found that most radio frequency spectrum was inefficiently utilized. Cellular network bands are overloaded in most parts of the world, but other frequency bands (such as military, amateur radio and paging frequencies) are insufficiently utilized. Independent studies performed in some countries confirmed that observation, and concluded that spectrum utilization depends on time and place. Moreover, fixed spectrum allocation prevents rarely used frequencies (those assigned to specific services) from being used, even when any unlicensed users would not cause noticeable interference to the assigned service. Regulatory bodies in the world have been considering whether to allow unlicensed users in licensed bands if they would not cause any interference to licensed users. These initiatives have focused cognitive-radio research on dynamic spectrum access. The first cognitive radio wireless regional area network standard, IEEE 802.22, was developed by IEEE 802 LAN/MAN Standard Committee (LMSC) and published in 2011. This standard uses geolocation and spectrum sensing for spectral awareness. Geolocation combines with a database of licensed transmitters in the area to identify available channels for use by the cognitive radio network. Spectrum sensing observes the spectrum and identifies occupied channels. IEEE 802.22 was designed to utilize the unused frequencies or fragments of time in a location. This white space is unused television channels in the geolocated areas. However, cognitive radio cannot occupy the same unused space all the time. As spectrum availability changes, the network adapts to prevent interference with licensed transmissions.

[ "Communication channel", "Interference (wave propagation)", "Wireless", "cognitive personal area network", "cognitive communication", "cognitive transmitter", "cognitive communications", "data fusion center" ]
Parent Topic
Child Topic
    No Parent Topic