Fluid Shear Stress Stimulates Osteogenic Differentiation of Human Periodontal Ligament Cells via the Extracellular Signal-Regulated Kinase 1/2 and p38 Mitogen-Activated Protein Kinase Signaling Pathways
2014
Background: Fluid shear stress (FSS) is a major type of mechanical stress that is loaded on human periodontal ligament cells (hPDLCs) during mastication and orthodontic tooth movement. This study aims to clarify the effect of FSS on the osteogenic differentiation of hPDLCs and to further verify the involvement of mitogen-activated protein kinase (MAPK) signaling in this process.Methods: After isolation and characterization, hPDLCs were subjected to 2-hour FSS at 12 dynes/cm2, and cell viability, osteogenic gene mRNA expression, alkaline phosphatase (ALP) activity, secretion of Type I collagen (COL-I), and calcium deposition were assayed. The levels of phosphorylated p38 and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) in response to FSS were detected by Western blot, and the involvement of ERK1/2 and p38 MAPK signaling pathways in hPDLC osteogenesis under FSS was investigated using the specific MAPK inhibitors U0126 (2Z,3Z)-2,3-bis[amino(2-aminophenylthio)methylene]succinonitrile,etha...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
23
Citations
NaN
KQI