Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases.

2008 
Inflammation plays a critical role in promoting smooth muscle migration and proliferation during vascular diseases such as post-angioplasty restenosis and atherosclerosis. Another common feature of many vascular diseases is the contribution of reactive oxygen (ROS) and nitrogen (RNS) species to vascular injury. Primary sources of ROS and RNS in smooth muscle are several isoforms of NADPH oxidase (Nox) and the cytokine-regulated inducible nitric oxide (NO) synthase (iNOS). One important example of the interaction between NO and ROS is the reaction of NO with superoxide to yield peroxynitrite, which may contribute to the pathogenesis of hypertension. In this review, we discuss the literature that supports an alternate possibility: Nox-derived ROS modulate NO bioavailability by altering the expression of iNOS. We highlight data showing co-expression of iNOS and Nox in vascular smooth muscle and demonstrating the functional consequences of iNOS and Nox during vascular injury. We describe the relevant literature demonstrating that the mitogen activated protein kinases (MAP kinases) are important modulators of pro-inflammatory cytokine-dependent expression of iNOS. A central hypothesis discussed is that ROS-dependent regulation of the serine/threonine kinase protein kinase Cδ (PKCδ) is essential to understanding how Nox may regulate signaling pathways leading to iNOS expression. Overall, the integration of non-phagocytic NADPHoxidase with cytokine signaling in general and in vascular smooth muscle in particular is poorly understood and merit further investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    179
    References
    54
    Citations
    NaN
    KQI
    []