Effects of sex and seasonality on the song control system and FoxP2 protein expression in black-capped chickadees (Poecile atricapillus)

2015 
Plasticity in behavior is mirrored by corresponding plasticity in the brain in many songbird species. In some species, song system nuclei (Phillmore et al. [2006]: J Neurobiol 66:1002–1010) are larger in birds in breeding condition than birds in nonbreeding condition, possibly due to increased vocal output in spring. FOXP2, a transcription factor associated with language expression and comprehension in humans and song learning in songbirds, also shows plasticity. FoxP2 expression in songbird Area X, a region important for sensorimotor integration, is related to developmental and adult vocal plasticity (Teramitsu et al. [2010]: J Neurosci 24:3152–3163, Chen et al. [2013], J Exp Biol 216:3682–3692). In this study, we examined whether sex and breeding condition affects both song control system volume (HVC, X) and FoxP2 protein expression in black-capped chickadees (Poecile atricapillus). HVC volume was larger in males in breeding condition than males in nonbreeding condition, but there were no sex differences. In contrast, Area X volume was larger in males than females, regardless of breeding condition, likely reflecting that male and female chickadees produce learned chick-a-dee calls year round, but output of the learned song increases in breeding males. FoxP2 protein levels did not differ between sexes or breeding condition when calculated as a ratio of labeled cells in Area X to labeled cells in the surrounding striato-pallium, however, absolute density of FoxP2 in both regions was higher in males than in females. This may indicate that chickadees maintain a level of FoxP2 necessary for plasticity year-round, but males have greater potential for plasticity compared to females. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 203–216, 2015
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []