language-icon Old Web
English
Sign In

FOXP2

Forkhead box protein P2 (FOXP2) is a protein that, in humans, is encoded by the FOXP2 gene, also known as CAGH44, SPCH1 or TNRC10, and is required for proper development of speech and language. FOXP2 is a transcription factor, meaning that it encodes for a regulatory protein. The gene is shared with many vertebrates, where it generally plays a role in communication (for instance, the development of bird song). Initially identified as the genetic factor of speech disorder in KE family, FOXP2 is the first gene discovered associated with speech and language. The gene is located on chromosome 7 (7q31, at the SPCH1 locus) and is expressed in fetal and adult brain, heart, lung and gut. FOXP2 orthologs have also been identified in other mammals for which complete genome data are available. The FOXP2 protein contains a forkhead-box DNA-binding domain, making it a member of the FOX group of transcription factors, involved in regulation of gene expression. In addition to this characteristic forkhead-box domain, the protein contains a polyglutamine tract, a zinc finger and a leucine zipper. The gene is more active in females than in males, to which could be attributed better language learning in females. In humans, mutations of FOXP2 cause a severe speech and language disorder. Versions of FOXP2 exist in similar forms in distantly related vertebrates; functional studies of the gene in mice and in songbirds indicate that it is important for modulating plasticity of neural circuits. Outside the brain FOXP2 has also been implicated in development of other tissues such as the lung and gut. FOXP2 is popularly dubbed the 'language gene', but this is only partly correct since there are other genes involved in language development. It directly regulates a number of other genes, including CNTNAP2, CTBP1, SRPX2 and SCN3A. Three amino acid substitutions distinguish the human FOXP2 protein from that found in mice, while two amino acid substitutions distinguish the human FOXP2 protein from that found in chimpanzees, but only one of these changes is unique to humans. Evidence from genetically manipulated mice and human neuronal cell models suggests that these changes affect the neural functions of FOXP2. FOXP2 and its gene were discovered as a result of investigations on an English family known as the KE family, half of whom (fifteen individuals across three generations) suffered from a speech and language disorder called developmental verbal dyspraxia. Their case was studied at the Institute of Child Health of University College London. In 1990 Myrna Gopnik, Professor of Linguistics at McGill University, reported that the disorder-affected KE family had severe speech impediment with incomprehensible talk, largely characterized by grammatical deficits. She hypothesized that the basis was not of learning or cognitive disability, but due to genetic factors affecting mainly grammatical ability. (Her hypothesis led to a popularised existence of 'grammar gene' and a controversial notion of grammar-specific disorder.) In 1995, the University of Oxford and the Institute of Child Health researchers found that the disorder was purely genetic. Remarkably, the inheritance of the disorder from one generation to the next was consistent with autosomal dominant inheritance, i.e., mutation of only a single gene on an autosome (non-sex chromosome) acting in a dominant fashion. This is one of the few known examples of Mendelian (monogenic) inheritance for a disorder affecting speech and language skills, which typically have a complex basis involving multiple genetic risk factors. In 1998, Oxford University geneticists Simon Fisher, Anthony Monaco, Cecilia S. L. Lai, Jane A. Hurst, and Faraneh Vargha-Khadem identified an autosomal dominant monogenic inheritance that is localized on a small region of chromosome 7 from DNA samples taken from the affected and unaffected members. The chromosomal region (locus) contained 70 genes. The locus was given the official name 'SPCH1' (for speech-and-language-disorder-1) by the Human Genome Nomenclature committee. Mapping and sequencing of the chromosomal region was performed with the aid of bacterial artificial chromosome clones. Around this time, the researchers identified an individual who was unrelated to the KE family, but had a similar type of speech and language disorder. In this case the child, known as CS, carried a chromosomal rearrangement (a translocation) in which part of chromosome 7 had become exchanged with part of chromosome 5. The site of breakage of chromosome 7 was located within the SPCH1 region. In 2001, the team identified in CS that the mutation is in the middle of a protein-coding gene. Using a combination of bioinformatics and RNA analyses, they discovered that the gene codes for a novel protein belonging to the forkhead-box (FOX) group of transcription factors. As such, it was assigned with the official name of FOXP2. When the researchers sequenced the FOXP2 gene in the KE family, they found a heterozygous point mutation shared by all the affected individuals, but not in unaffected members of the family and other people. This mutation is due to an amino-acid substitution that inhibits the DNA-binding domain of the FOXP2 protein. Further screening of the gene identified multiple additional cases of FOXP2 disruption, including different point mutations and chromosomal rearrangements, providing evidence that damage to one copy of this gene is sufficient to derail speech and language development.

[ "Transcription factor", "Pre-locus coeruleus", "KE family", "Developmental verbal dyspraxia", "FOXP2 Gene" ]
Parent Topic
Child Topic
    No Parent Topic