Direct Visualization of Gap-Plasmon Propagation on a Near-Touching Nanowire Dimer.

2020 
Dimers of metallic nanowires (NWs) with nanometric gaps could be an alternative to overcome the limitations of existing plasmonic waveguides. The gap-surface plasmon polaritons (gap-SPPs) of the dimers may propagate along the NW without crosstalk and greatly enhance the coupling efficiency with an emitter, enabling ultracompact optical circuits. Such a possibility has not been realized, and we experimentally show its possibility. The gap-SPPs of the AgNW-molecule-AgNW structure, with a gap of 3-5 nm defined by the molecules, are visualized using the surface-enhanced Raman scattering (SERS) of the molecules. The SERS images, representing the gap-field intensity distribution, reveal the decay and beating of the monopole-monopole and dipole-dipole gap modes. The propagation lengths of the two (l1 = 0.5-2 μm and l2 = 5-8 μm) closely follow the model prediction with a uniform gap, confirming that the scattering loss induced by the gap irregularities is surprisingly low.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []