Hsp-90 Inhibition Decreases Survival of BCR-ABL T315I Leukemic Stem Cells in Mice.

2006 
Although advances have been made in the development of novel molecularly targeted drugs, a major therapeutic challenge in the treatment of patients with Philadelphia chromosome positive (Ph+) leukemia includes understanding how to target the leukemic stem cell. We used the bone marrow transplant (BMT) model of chronic myelogenous leukemia (CML) to study effects of imatinib mesylate and the novel, orally active heat shock protein 90 (Hsp90) inhibitor, IPI-504, on leukemic stem cells, based on our observation that unlike imatinib, IPI-504, prolongs survival in a murine model of drug-resistant T315I BCR-ABL-induced CML. We first identified BCR-ABL-expressing hematopoietic stem cells (HSCs) (Lin-c-Kit+Sca-1+) in mouse bone marrow as CML stem cells, as these cells sorted out by FACS from primary CML mice are sufficient to confer leukemia in recipient mice. We then investigated the effects of imatinib and IPI-504 on survival of leukemic stem cells from BCR-ABL T315I induced CML. Bone marrow cells from mice with T315I-induced CML were cultured under conditions that support survival and growth of stem cells, with or without IPI-504 or imatinib. FACS analysis of GFP+Lin-c-Kit+Sca-1+ cells showed that imatinib treatment did not lower the percentage and the number of leukemia stem cells, whereas IPI-504 treatment had a dramatic inhibitory effect on this population (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []