A Robust Precious Metal‐free Dye‐sensitized Photoanode for Water Oxidation: Nanosecond Long Excited State Lifetime via a Prussian Blue Analogue

2019 
Herein, we establish a simple synthetic strategy affording a heterogeneous, precious metal-free, dye-sensitized photoelectrode for water oxidation, which incorporates a Prussian blue (PB) structure for the sensitization of TiO2 and water oxidation catalysis. Our approach involves the use of a Fe(CN)5 bridging group not only as a cyanide precursor for the formation of a PB-type structure but also as an electron shuttle between an organic chromophore and the catalytic center. The resulting hetero-functional PB-modified TiO2 electrode demonstrates a low-cost and easy-to-construct photoanode, which exhibits favorable electron transfers with a remarkable excited state lifetime on the order of nanoseconds and an extended light absorption capacity of up to 500 nm. Our approach paves the way for a new family of precious metal-free robust dye-sensitized photoelectrodes for water oxidation, in which a variety of common organic chromophores can be employed in conjunction with CoFe PB structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    15
    Citations
    NaN
    KQI
    []