language-icon Old Web
English
Sign In

Prussian blue

Sodium ferrocyanidePrussian blue is a dark blue pigment produced by oxidation of ferrous ferrocyanide salts. It has the chemical formula FeIII43. Another name for the color is Berlin blue or, in painting, Parisian or Paris blue. Turnbull's blue is the same substance, but is made from different reagents, and its slightly different color stems from different impurities. Prussian blue is a dark blue pigment produced by oxidation of ferrous ferrocyanide salts. It has the chemical formula FeIII43. Another name for the color is Berlin blue or, in painting, Parisian or Paris blue. Turnbull's blue is the same substance, but is made from different reagents, and its slightly different color stems from different impurities. Prussian blue was the first modern synthetic pigment. It is prepared as a very fine colloidal dispersion, because the compound is not soluble in water. It contains variable amounts of other ions and its appearance depends sensitively on the size of the colloidal particles. The pigment is used in paints, and it is the traditional 'blue' in blueprints and aizuri-e (藍摺り絵) Japanese woodblock prints. In medicine, orally administered Prussian blue is used as an antidote for certain kinds of heavy metal poisoning, e.g., by thallium(I) and radioactive isotopes of caesium. The therapy exploits the compound's ion-exchange properties and high affinity for certain 'soft' metal cations. It is on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system. Prussian blue lent its name to prussic acid (hydrogen cyanide) derived from it. In German, hydrogen cyanide is called Blausäure ('blue acid'). French chemist Joseph Louis Gay-Lussac gave cyanide its name, from the Ancient Greek word κύανος (kyanos, 'blue'), because of the color of Prussian blue. Prussian blue pigment is significant since it was the first stable and relatively lightfast blue pigment to be widely used following the loss of knowledge regarding the synthesis of Egyptian blue. European painters had previously used a number of pigments such as indigo dye, smalt, and Tyrian purple, which tend to fade, and the extremely expensive ultramarine made from lapis lazuli. Japanese painters and woodblock print artists, likewise, did not have access to a long-lasting blue pigment until they began to import Prussian blue from Europe. Prussian blue Fe7(CN)18 (also (Fe43) · xH2O) was probably synthesized for the first time by the paint maker Diesbach in Berlin around 1706. Most historical sources do not mention a first name of Diesbach. Only Berger refers to him as Johann Jacob Diesbach. The pigment is believed to have been accidentally created when Diesbach used potash tainted with blood to create some red cochineal dye. The original dye required potash, ferric sulfate, and dried cochineal. Instead, the blood, potash, and iron sulfate reacted to create a compound known as iron ferrocyanide, which, unlike the desired red pigment, has a very distinct blue hue. It was named Preußisch blau and Berlinisch Blau in 1709 by its first trader. The pigment replaced the expensive lapis lazuli and was an important topic in the letters exchanged between Johann Leonhard Frisch and the president of the Prussian Academy of Sciences, Gottfried Wilhelm Leibniz, between 1708 and 1716. It is first mentioned in a letter written by Frisch to Leibniz, from March 31, 1708. Not later than 1708, Frisch began to promote and sell the pigment across Europe. By August 1709, the pigment had been termed Preussisch blau; by November 1709, the German name Berlinisch Blau had been used for the first time by Frisch. Frisch himself is the author of the first known publication of Prussian blue in the paper Notitia Coerulei Berolinensis nuper inventi in 1710, as can be deduced from his letters. Diesbach had been working for Frisch since about 1701. To date, the Entombment of Christ, dated 1709 by Pieter van der Werff (Picture Gallery, Sanssouci, Potsdam) is the oldest known painting where Prussian blue was used. Around 1710, painters at the Prussian court were already using the pigment. At around the same time, Prussian blue arrived in Paris, where Antoine Watteau and later his successors Nicolas Lancret and Jean-Baptiste Pater used it in their paintings. In 1731, Georg Ernst Stahl published an account of the first synthesis of Prussian blue. The story involves not only Diesbach, but also Johann Konrad Dippel. Diesbach was attempting to create a red lake pigment from cochineal, but obtained the blue instead as a result of the contaminated potash he was using. He borrowed the potash from Dippel, who had used it to produce his 'animal oil'. No other known historical source mentions Dippel in this context. It is, therefore, difficult to judge the reliability of this story today. In 1724, the recipe was finally published by John Woodward.

[ "Electrode", "Electrochemistry", "Prussian Blue Reaction", "Radiogardase", "Ferric hexacyanoferrate", "Soluble Prussian blue", "FERRIC FERROCYANIDE" ]
Parent Topic
Child Topic
    No Parent Topic