Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus

2019 
Although deep neural networks (DNNs) have led to many remarkable results in cognitive tasks, they are still far from catching up with human-level cognition in antinoise capability. New research indicates how brittle and susceptible current models are to small variations in data distribution. In this letter, we study the stochasticity-resistance character of biological neurons by simulating the input-output response process of a leaky integrate-and-fire (LIF) neuron model and proposed a novel activation function, rand softplus, (RSP) to model the response process. In RSP, a scale factor η is employed to mimic the stochasticity-adaptability of biological neurons, thereby enabling the antinoise capability of a DNN to be improved by the novel activation function. We validated the performance of RSP with a 19-layer residual network (ResNet) and a 19-layer visual geometry group (VGG) on facial expression recognition data sets and compared it with other popular activation functions, such as rectified linear unit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    11
    Citations
    NaN
    KQI
    []