A biological neuron model, also known as a spiking neuron model, is a mathematical description of the properties of certain cells in the nervous system that generate sharp electrical potentials across their cell membrane, roughly one millisecond in duration, as shown in Fig. 1. Spiking neurons are known to be a major signaling unit of the nervous system, and for this reason characterizing their operation is of great importance. It is worth noting that not all the cells of the nervous system produce the type of spike that define the scope of the spiking neuron models. For example, cochlear hair cells, retinal receptor cells, and retinal bipolar cells do not spike. Furthermore, many cells in the nervous system are not classified as neurons but instead are classified as glia.- No dendrites- Active dendrites: cell recognizes hundreds of unique patterns- Thousands of synapses A biological neuron model, also known as a spiking neuron model, is a mathematical description of the properties of certain cells in the nervous system that generate sharp electrical potentials across their cell membrane, roughly one millisecond in duration, as shown in Fig. 1. Spiking neurons are known to be a major signaling unit of the nervous system, and for this reason characterizing their operation is of great importance. It is worth noting that not all the cells of the nervous system produce the type of spike that define the scope of the spiking neuron models. For example, cochlear hair cells, retinal receptor cells, and retinal bipolar cells do not spike. Furthermore, many cells in the nervous system are not classified as neurons but instead are classified as glia. Ultimately, biological neuron models aim to explain the mechanisms underlying the operation of the nervous system for the purpose of restoring lost control capabilities such as perception (e.g. deafness or blindness), motor movement decision making, and continuous limb control. In that sense, biological neuron models differ from artificial neuron models that do not presume to predict the outcomes of experiments involving the biological neural tissue (although artificial neuron models are also concerned with execution of perception and estimation tasks). Accordingly, an important aspect of biological neuron models is experimental validation, and the use of physical units to describe the experimental procedure associated with the model predictions.