Gravity Sensing Mechanisms in Plant Cells

2007 
Sensing of gravity is essential for the survival of plant seedlings. Therefore it is understandable that gravistimulation of only 0.5 sec-duration causes a graviresponse. The earliest graviresponses could be measured within seconds as alterations in membrane potentials of the statocytes in the root cap. Root statocytes are polarly organized. From a 6-day microgravity - 10-4 g) experiment in the Spacelab Dl Mission it has been concluded that the observed polar differentiation is a result of a genetically prepatterned developmental program. Statoliths, the sedimentable organelles of statocytes, are surrounded by actin filaments which partly keep them in position. Under 6 min of microgravity during parabolic flights of rockets it could be demonstrated that the statoliths moved in the opposite direction to the initial gravity vector. It is concluded that shearing forces are exerted by microfilaments. It is supposed that the change of the position of statoliths is transmitted to gravisensitive structures of the statocytes (ER, plasma membrane) via microfilaments. As graviperception is influenced by calcium ions, it is suggested that these interactions regulate the activity of ion channels and/or pumps in the membranes thus initiating the graviresponse chain. In the case of cytoplasmic streaming in Chara rhizoids, the endogenous difference between the opposing streaming directions is diminished under microgravity during the flights of rockets. Possibly, shear stresses are affected by gravity, thus inducing gravity-related differences in the streaming velocities via actin filaments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    8
    Citations
    NaN
    KQI
    []