language-icon Old Web
English
Sign In

Cytoplasmic streaming

Cytoplasmic streaming, also called protoplasmic streaming and cyclosis, is where there is flow inside the cytoplasm. It is typically observed in large plant and animal cells. Here flow means that the cytoplasm is moving inside the cell, it is not stationary. The flow is driven by forces from the cytoskeleton, and it is likely that the function of flow is at least partly to speed up transport of molecules and organelles around the cell. Cytoplasmic streaming is usually found in unusually large cells, greater than approximately 0.1 mm. In smaller cells, diffusion of molecules will be rapid but diffusion slows rapidly as the size increases, and so larger cells may need flow to move nutrients etc inside them rapidly enough for efficient function. Cytoplasmic streaming, also called protoplasmic streaming and cyclosis, is where there is flow inside the cytoplasm. It is typically observed in large plant and animal cells. Here flow means that the cytoplasm is moving inside the cell, it is not stationary. The flow is driven by forces from the cytoskeleton, and it is likely that the function of flow is at least partly to speed up transport of molecules and organelles around the cell. Cytoplasmic streaming is usually found in unusually large cells, greater than approximately 0.1 mm. In smaller cells, diffusion of molecules will be rapid but diffusion slows rapidly as the size increases, and so larger cells may need flow to move nutrients etc inside them rapidly enough for efficient function. The green alga genus Chara possesses some very large cells, up to 10 cm in length, and cytoplasmic streaming has been studied in these large cells. Cytoplasmic streaming is strongly dependent upon intracellular pH and temperature. It has been observed that the effect of temperature on cytoplasmic streaming created linear variance and dependence at different high temperatures in comparison to low temperatures. This process is complicated, with temperature alterations in the system increasing its efficiency, with other factors such as the transport of ions across the membrane being simultaneously affected. This is due to cells homeostasis depending upon active transport which may be affected at some critical temperatures. In plant cells, chloroplasts may be moved around with the stream, possibly to a position of optimum light absorption for photosynthesis. The rate of motion is usually affected by light exposure, temperature, and pH levels.

[ "Actin", "Cytoskeleton", "Cytoplasm", "Nitella axilliformis", "Vallisneria gigantea" ]
Parent Topic
Child Topic
    No Parent Topic