A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma

2021 
Background: Pegylated recombinant human arginase (PEG-BCT-100) is an arginine depleting drug. Preclinical studies showed that HCC is reliant on exogenous arginine for growth due to the under-expression of the arginine regenerating enzymes argininosuccinate synthetase (ASS) and ornithine transcarbamylase (OTC). Methods: This is a single arm open-label Phase II trial to assess the potential clinical efficacy of PEG-BCT-100 in chemo naive sorafenib-failure HCC patients. Pre-treatment tumour biopsy was mandated for ASS and OTC expression by immunohistochemistry (IHC). Weekly intravenous PEG-BCT-100 at 2.7 mg/kg was given. Primary endpoint was time to progression (TTP); secondary endpoints included radiological response as per RECIST1.1, progression free survival (PFS) and overall survival (OS). Treatment outcomes were correlated with tumour immunohistochemical expressions of ASS and OTC. Results: In total 27 patients were recruited. The median TTP and PFS were both 6 weeks (95% CI, 5.9–6.0 weeks). The disease control rate (DCR) was 21.7% (5 stable disease). The drug was well tolerated. Post hoc analysis showed that duration of arginine depletion correlated with OS. For patients with available IHC results, 10 patients with ASS-negative tumour had OS of 35 weeks (95% CI: 8.3–78.0 weeks) vs. 15.14 weeks (95% CI: 13.4–15.1 weeks) in 3 with ASS-positive tumour; expression of OTC did not correlate with treatment outcomes. Conclusions: PEG-BCT-100 in chemo naive post-sorafenib HCC is well tolerated with moderate DCR. ASS-negative confers OS advantage over ASS-positive HCC. ASS-negativity is a potential biomarker for OS in HCC and possibly for other ASS-negative arginine auxotrophic cancers. Trial registration number: NCT01092091. Date of registration: March 23, 2010.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    4
    Citations
    NaN
    KQI
    []