language-icon Old Web
English
Sign In

Ornithine transcarbamylase

1OTH, 1C9Y, 1EP9, 1FVO500918416ENSG00000036473ENSMUSG00000031173P00480P11725NM_000531NM_008769NP_000522NP_032795Ornithine transcarbamylase (OTC) (also called ornithine carbamoyltransferase) is an enzyme (EC 2.1.3.3) that catalyzes the reaction between carbamoyl phosphate (CP) and ornithine (Orn) to form citrulline (Cit) and phosphate (Pi). There are two classes of OTC anabolic and catabolic. This article focuses on anabolic OTC. Anabolic OTC facilitates the sixth step in the biosynthesis of the amino acid arginine in prokaryotes. In contrast, mammalian OTC plays an essential role in the urea cycle whose purpose is to capture toxic ammonia and transform it into less toxic urea nitrogen source for excretion. 1c9y: HUMAN ORNITHINE TRANSCARBAMYLASE: CRYSTALLOGRAPHIC INSIGHTS INTO SUBSTRATE RECOGNITION AND CATALYTIC MECHANISM1ep9: HUMAN ORNITHINE TRANSCARBAMYLASE: CRYSTALLOGRAPHIC INSIGHTS INTO SUBSTRATE RECOGNITION AND CONFORMATIONAL CHANGE1fb5: LOW RESOLUTION STRUCTURE OF OVINE ORNITHINE TRANSCARBMOYLASE IN THE UNLIGANDED STATE1fvo: CRYSTAL STRUCTURE OF HUMAN ORNITHINE TRANSCARBAMYLASE COMPLEXED WITH CARBAMOYL PHOSPHATE1oth: CRYSTAL STRUCTURE OF HUMAN ORNITHINE TRANSCARBAMOYLASE COMPLEXED WITH N-PHOSPHONACETYL-L-ORNITHINE Ornithine transcarbamylase (OTC) (also called ornithine carbamoyltransferase) is an enzyme (EC 2.1.3.3) that catalyzes the reaction between carbamoyl phosphate (CP) and ornithine (Orn) to form citrulline (Cit) and phosphate (Pi). There are two classes of OTC anabolic and catabolic. This article focuses on anabolic OTC. Anabolic OTC facilitates the sixth step in the biosynthesis of the amino acid arginine in prokaryotes. In contrast, mammalian OTC plays an essential role in the urea cycle whose purpose is to capture toxic ammonia and transform it into less toxic urea nitrogen source for excretion. OTC is a trimeric protein. There are three active sites of the protein which are located at the cleft between the monomers. The carbamoyl phosphate binding domain resides on the N-terminal end of each monomer, while the C-terminal end contains the binding domain for ornithine. Both binding domains have a similar structural pattern with a central parallel β-pleated sheet bordered by α-helices and loops. In addition to the binding domains, OTCs have SMG loops. These swing to close the binding site once both substrates have bound. SMG stands for the conserved amino acid motif of Ser-Met-Gly. Upon closure, these residues interact with L-ornithine. The binding of CP induces a global conformational change, while the binding of L-ornithine only induces movement of the SMG loop to close and isolate the activation site. Ser-Thr-Arg-Thr-Arg motif from one subunit and a His from the neighboring subunit both interact with the phosphate group of CP for binding. Binding the primary nitrogen of CP are residues Gln, Cys, and Arg. The carbonyl oxygen of CP is bound by residues Thr, Arg, and His.  Plant OTCs have the largest difference from other OTCs. There are 50 to 70% less Leu residues, while there are twice as many Arg residues. The number of subunits in OTCs vary from 322 to 340 residues. Animals have the highest density of Leu. This residue breakdown causes a pI for the animal enzyme of 6.8 while the plant enzyme has a pI of 7.6. Rat, bovine, and human OTC have the same C terminal residue of phenylalanine. Their N-terminal residues on the other hand differ. Rat ends with Ser, bovine with aspartate, and human with glycine. The human OTC gene is located on the short arm of chromosome X (Xp21.1). The gene is located in the Watson (plus) strand and is 73 kbases in length. The open reading frame of 1,062 nucleotides and is disbused between 10 exons and nine introns. The encoded protein is 354 amino acids long with a predicted molecular weight of 39.935 kD. Postranscriptional modification leaves the mature peptide with 322 amino acids and a weight of 36.1 kD. The protein is located in the mitochondrial matrix. In mammals, OTC is expressed in the liver and small intestinal mucosa. 341 mutations in human OTC have been reported. 149 of these mutations are known to cause onset of hyperammonemia during the first weeks of life. 70 manifest as hyperammonemia in male patients later in life. Most of the mutations occur in known functional motifs, such as the SMG loop or CP binding domains. Mutations in the OTC gene can cause Ornithine Transcarbamylase deficiency. It is classified as a urea cycle disorder due to the fact that without proper OTC function ammonia starts to accumulate in the blood. Accumulation of ammonia in the blood is known as hyperammonemia. As ammonia, though toxic, is a nitrogen source for the body, therefore increased levels will cause an increase in the levels of the amino acids, glutamate and alanine. Levels of carbamoyl phosphate (CP) will begin to drop as urea nitrogen levels in the blood decrease. This will cause CP to be diverted to the uridine monophosphate synthetic pathway. Orotic acid is a product of this pathway. Increased levels of orotic acid in urine can be an indicator that a patient is suffering from a disorder linker to hyperammonemia.

[ "Urea cycle", "Gene", "Enzyme", "Ornithine transcarbamylase activity", "Acetylornithinase", "Ornithine Carbamoyltransferase Deficiency Disease", "OTC activity", "Carbamylphosphate synthetase I" ]
Parent Topic
Child Topic
    No Parent Topic