Generation of CD34+CD43+ hematopoietic progenitors to induce thymocytes from human pluripotent stem cells

2021 
Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells and lack of product standardization have limited its uses in the clinic. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinic access. However, despite their potential, the feasibility and functionality of T-cells differentiated from hPSCs needs better comprehension before moving to the clinic. In this study, we generated human induced pluripotent stem cells from T-cells (T-iPSCs) allowing preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated with high efficiency hematopoietic progenitor stem cells (HPSCs), capable of self-renewal and differentiation into any cell blood type, and then DN3a thymic progenitors from several T-iPSC lines. To better comprehend differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had a very similar profile to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, with this approach, we were able to regenerate precursors of therapeutic human T cells to potentially treat a wide number of diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []