Commensal Microbiota Modulation of Natural Resistance to Virus Infection.

2020 
Summary Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-β by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-β was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-β. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-β expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-β. In a murine VSV infection model, commensal-induced IFN-β regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-β-inducing microbial molecule represents a potential approach for the treatment of some human diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    42
    Citations
    NaN
    KQI
    []