Indiana vesiculovirus, formerly Vesicular stomatitis Indiana virus (VSIV or VSV) is a virus in the family Rhabdoviridae; the well-known Rabies lyssavirus belongs to the same family. VSIV can infect insects, cattle, horses and pigs. It has particular importance to farmers in certain regions of the world where it infects cattle. This is because its clinical presentation is identical to the very important foot and mouth disease virus. Indiana vesiculovirus, formerly Vesicular stomatitis Indiana virus (VSIV or VSV) is a virus in the family Rhabdoviridae; the well-known Rabies lyssavirus belongs to the same family. VSIV can infect insects, cattle, horses and pigs. It has particular importance to farmers in certain regions of the world where it infects cattle. This is because its clinical presentation is identical to the very important foot and mouth disease virus. The virus is zoonotic and leads to a flu-like illness in infected humans. It is also a common laboratory virus used to study the properties of viruses in the family Rhabdoviridae, as well as to study viral evolution. Indiana vesiculovirus is the prototypic member of the genus Vesiculovirus of the family Rhabdoviridae. VSIV is an arbovirus, and its replication occurs in the cytoplasm. Natural VSIV infections encompass two steps, cytolytic infections of mammalian hosts and transmission by insects. In insects, infections are noncytolytic persistent. One confirmed vector of the virus is the phlebotomine sand fly Lutzomyia shannoni. The genome of VSIV is on a single molecule of negative-sense RNA that has 11,161 nucleotides in length, that encodes five major proteins: G protein (G), large protein (L), phosphoprotein (P), matrix protein (M) and nucleoprotein (N): The VSIV G protein, aka VSVG, enables viral entry. It mediates viral attachment to an LDL receptor (LDLR) or an LDLR family member present on the host cell. Following binding, the VSIV-LDLR complex is rapidly endocytosed. It then mediates fusion of the viral envelope with the endosomal membrane. VSIV enters the cell through partially clathrin-coated vesicles; virus-containing vesicles contain more clathrin and clathrin adaptor than conventional vesicles. Virus-containing vesicles recruit components of the actin machinery for their interaction, thus inducing its own uptake. VSIV G does not follow the same path as most vesicles because transport of the G protein from the ER to the plasma membrane is interrupted by incubation at 15 °C. Under this condition, the molecules accumulate in both the ER and a subcellular vesicle fraction of low density called the lipid-rich vesicle fraction. The material in the lipid-rich vesicle fraction appears to be a post-ER intermediate in the transport process to the plasma membrane (PM). After infection, the VSIV G gene is expressed and is commonly studied as a model for N-linked glycosylation in the endoplasmic reticulum (ER). It is translated into the rough ER where the Glc3-Man9-GlcNac2 oligosaccharide is added by a dolichol-containing protein, to an NXS motif on VSIV G. Sugars are removed gradually as the protein travels to the Golgi apparatus, and it becomes resistant to endoglycosidase H. When synthesized in polarized epithelial cells, the envelope glycoprotein VSV G is targeted to the basolateral PM. VSVG is also a common coat protein for lentiviral vector expression systems used to introduce genetic material into in vitro systems or animal models, mainly because of its extremely broad tropism. The VSIV L protein is encoded by half the genome, and combines with the phosphoprotein to catalyze replication of the mRNA.