193-nm immersion photomask image placement in exposure tools

2006 
In case drastic changes need to be made to tool configurations or blank specifications, it is important to know as early as possible under which conditions the tight image placement requirements of future lithography nodes can be achieved. Modeling, such as finite element simulations, can help predict the magnitude of structural and thermal effects before actual manufacturing issues occur, and basic experiments using current tools can readily be conducted to verify the predicted results or perform feasibility tests for future nodes. Using numerical simulations, experimental mask registration, and printing data, the effects on image placement of stressed layer patterning, pellicle attachment, blank dimensional and material tolerances, as well as charging during e-beam writing were investigated for current mask blank specifications. This provides an understanding of the areas that require more work for image placement error budgets to be met and to insure the viability of optical lithography for future nodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    9
    Citations
    NaN
    KQI
    []