Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting

2022 
Abstract In this work, a two-dimensional heterostructure of molybdenum disulfide (MoS2) and nickel hydroxyl oxide (NiOOH) nanosheets supported on catkin-derived mesoporous carbon (C-MC) was constructed and exploited as an efficient electrocatalyst for overall water splitting. The C-MC nanostructure was prepared by pyrolyzing biomass material of catkin at 600 °C in N2 atmosphere. The C-MC network exhibited hollow nanotube structure and had a large specific surface area, comprising trace nitrogen and a large amount of oxygen vacancies. It further served as the support for the growth of NiOOH nanosheets (NiOOH@C-MC), which was combined with MoS2 nanosheets by in situ growth, yielding a multicomponent electrocatalyst (MoS2@NiOOH@C-MC). By integrating the superior hydrogen evolution reaction (HER) performance of MoS2, oxygen evolution reaction (OER) performance of NiOOH, and the fast electron transfer capability of C-MC, the prepared MoS2@NiOOH@C-MC illustrated a low potential of −250 mV for HER and 1.51 V for OER at the current density of 10 mV cm−2. Consequently, when applied as the working electrode for driving overall water splitting in a two-electrode system, the bifunctional MoS2@NiOOH@C-MC electrocatalyst displayed a low overpotential of 1.62 V at the current density of 10 mA cm−2. The present work provides a new strategy that uses biomass material for developing bifunctional electrocatalyst for overall water splitting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    1
    Citations
    NaN
    KQI
    []