Fracture resistance of simulated immature teeth rehabilitated with different restorative materials: A three-dimensional finite element analysis

2017 
Aim: The aim of this study was to evaluate and compare the fracture resistance of simulated immature teeth rehabilitated with different restorative materials. Materials and Methods: A three-dimensional mathematical finite element analysis model was generated using a simulated immature maxillary central incisor. Five different models were generated representing Model 1 (control group): an immature tooth model without any reinforcement material; Model 2: Mineral trioxide aggregate (MTA) as apical plug (4 mm) + dual cure composite resin (till the access cavity); Model 3: Biodentine as apical plug (4 mm) + dual cure composite resin (till the access cavity); Model 4: Biodentine filled in the entire root canal (8.5 mm) + dual cure composite resin (till the access cavity); and Model 5: MTA filled in the entire root canal (8.5 mm) + dual cure composite resin (till the access cavity). A force of 100N was applied at an angle of 130° to the palatal surface of the tooth. Stress distribution at cement-enamel junction was measured using the Von Mises stress criteria. Results: The highest stress development was seen in the Model 1 (control group). Model 3 showed higher fracture resistance as the stresses developed (when a 4 mm of apical plug of Biodentine reinforced with dual cure resin) were less followed by Model 2, 4, and 5. Conclusion: An apical plug of 4 mm Biodentine followed by intracanal rehabilitation with dual cure resin reinforces the immature tooth thereby increasing the fracture resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []