Intrinsic normal Zeeman effect for spin plasmons in semiconductor quantum wells

2013 
The normal Zeeman effect gives rise to a three-fold splitting of atomic spectral lines in the presence of strong external magnetic fields. In n-doped semiconductor quantum wells, a similar three-fold splitting occurs in the intersubband spin plasmon resonance, as was recently demonstrated experimentally using inelastic light scattering. The plasmon splitting is caused by the interplay of intrinsic spin-orbit crystal magnetic fields and dynamical many-body effects. We show that it can be regarded as an intrinsic normal Zeeman effect in quantum wells. We present a formal framework for calculating the quantum well electronic states and their collective linear response in the presence of Rashba and Dresselhaus spin-orbit coupling, and we show how the intrinsic normal Zeeman effect of the spin plasmons can be controlled by external magnetic fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []