Anomalous Compressibility and Amorphization in AlPO4-17, the Oxide with the Highest Negative Thermal Expansion

2017 
AlPO4-17, known as the oxide with the highest negative thermal expansion (NTE), was studied under high pressure by angle-dispersive X-ray diffraction (XRD), mid- and far-infrared (IR) spectroscopy. Upon increasing pressure, the closure of the (P–O–Al) angle destabilizes the porous AlPO4-17 structure, which drives the amorphization process. On the basis of the decrease in intensity of the XRD lines and broadening of the IR modes, the material was found to begin to amorphize near 1 GPa. XRD, mid- and far-IR analysis evidenced pressure-induced framework softening and complete irreversible amorphization near 2.5 GPa corresponding to the collapse of the pores. The bulk modulus and its first pressure derivative (B0 = 31.2(5) GPa and B′0 = −10.1(3)) at ambient temperature were determined by fitting a third order Birch–Murnaghan equation of state (EOS) to the pressure–volume data. The material is extremely compressible and exhibits an elastic instability. Anomalous (negative) values of B′0 are very rare and have ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    7
    Citations
    NaN
    KQI
    []