METEORIX: a cubesat mission dedicated to the detection of meteors

2018 
Here, we present a cubesat space mission dedicated to the detection and characterization of meteors. The detection of meteors brings information on the flux of meteoroids and space debris in Earth environment and on the nature of the meteoroids that come from two reservoirs: comets and asteroids [1]. Such study brings information on the formation of the solar system. Several methods have been developed from Earth ground and airborne to detect meteors or space debris. However, the advantage of a space mission dedicated to meteors observation is to be able to probe a large volume of the Earth atmosphere and to avoid weather constraints [2]. The primary objective is to assess a robust statistics on meteoroids and space debris that enter into the Earth atmosphere. At present, their fluxes and properties are not yet determined accurately [3]. These estimates will allow to quantify the delivery of extraterrestrial material on Earth, and possible consequences on aeronomy (e.g. noctilucent clouds and atomic layer). These estimations are also crucial to estimate impact risks for artificial satellites during meteor showers. There are several secondary objectives such as to bring information on ablation, fragmentation, rotation processes by photometry variation; to determine the trajectory in connection with Earth- ground network such as FRIPON network developed in France in order to find the dynamical origin of the meteoroid; and to detect other fainter luminous atmospheric. This cubesat is a 3U developed by students from Sorbonne University and the project is presently in phase B [4]. The launch would be scheduled in four years. Support from CNES-JANUS, ESEP, and IDEX Sorbonne Universites are acknowledged. [1] Jenniskens, P., 2006, Meteor Showers and their Parent Comets. Ed. Cambridge University Press, Cambridge, U.K. [2] Bouquet A., Baratoux D., Vaubaillon J., et al. 2014, Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere, Planetary and Space Science 103 (2014) 238-249 [3] Zolensky, M., Bland, P., Brown, P., and Halliday, I. 2006, Meteorites and the Early Solar System II, 869 [4]Meteorix, A student nanosatellite Project by UPMC - Sorbonne Universites, Phase A review, MET_MGT_HO_0068_v1r1_11092017
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []