Dirac dispersion generates unusually large Nernst effect in Weyl semimetals

2018 
Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP (maximum of 800 microV K-1 at 9 T, 109 K) exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. The Nernst effect has a pronounced maximum near T_M=90 +/- 20 K=mu_0/kB (mu_0 is chemical potential at T=0 K). A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at T>=TM, driven by charge neutrality and Dirac band symmetry. Temperature and field dependences of the Nernst effect, an even function of the charge polarity, result from the intrinsically bipolar nature of the Weyl fermions. Through this study, we offer an understanding of the temperature dependence of the position of the electrochemical potential vis-a-vis the Weyl point, and we show a direct connection between topology and the Nernst effect, a potentially robust experimental tool for investigating topological states and the chiral anomaly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    71
    Citations
    NaN
    KQI
    []