language-icon Old Web
English
Sign In

Nernst effect

In physics and chemistry, the Nernst effect (also termed first Nernst–Ettingshausen effect, after Walther Nernst and Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other. An electric field will be induced normal to both. In physics and chemistry, the Nernst effect (also termed first Nernst–Ettingshausen effect, after Walther Nernst and Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other. An electric field will be induced normal to both. This effect is quantified by the Nernst coefficient |N|, which is defined to be where E Y {displaystyle E_{Y}} is the y-component of the electric field that results from the magnetic field's z-component B Z {displaystyle B_{Z}} and the temperature gradient d T / d x {displaystyle dT/dx} . The reverse process is known as the Ettingshausen effect and also as the second Nernst–Ettingshausen effect. Mobile energy carriers (for example conduction-band electrons in a semiconductor) will move along temperature gradients due to statistics and the relationshipbetween temperature and kinetic energy. If there is a magnetic field transversal to the temperature gradient and the carriers are electrically charged, they experience a force perpendicular to their direction of motion (also the direction of the temperature gradient) and to the magnetic field. Thus, a perpendicular electric field is induced. Semiconductors exhibit the Nernst effect. This has been studied in the 1950s by Krylova, Mochan and many others. In metals however, it is almost non-existent. It appears in the vortex phaseof type-II superconductors due to vortex motion. This has been studied by Huebener et al. High-temperature superconductors exhibit the Nernst effect both in the superconducting and in the pseudogap phase, as was first found by Xu et al. Heavy-Fermion superconductors can show a strong Nernst signal which is likely not due to the vortices, as was found by Bel et al.

[ "Superconductivity", "Thermoelectric effect", "Magnetic field", "Nernst equation" ]
Parent Topic
Child Topic
    No Parent Topic