Light trapping in a-Si:H thin film solar cells using silver nanostructures

2017 
Plasmonic thin film solar cells (modified with metallic nanostructures) often display enhanced light absorption due to surface plasmon resonance (SPR). However, the plasmonic field localization may not be significantly beneficial to improved photocurrent conversion efficiency for all types of cell configurations. For instance, the integration of random metallic nanoparticles (NPs) into thin film solar cells often introduces additional texturing. This texturing might also contribute to enhanced photon-current efficiency. An experimental systematic investigation to decouple both the plasmonic and the texturing contributions is hard to realize for cells modified with randomly deposited metallic nanoparticles. This work presents an experimental and computational investigation of well-defined plasmonic (Ag) nanoparticles, fabricated by nanosphere lithography, integrated to the back contact of hydrogenated amorphous silicon (a-Si:H) solar cells. The size, shape, periodicity and the vertical position of the Ag n...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    11
    Citations
    NaN
    KQI
    []