Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating.

2016 
In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    22
    Citations
    NaN
    KQI
    []