High-speed cryo-focusing injection for gas chromatography: Reduction of injection band broadening with concentration enrichment

2012 
Abstract In order to maximize peak capacity and detection sensitivity of fast gas chromatography (GC) separations, it is necessary to minimize band broadening, and in particular due to injection since this is often a major contributor. A high-speed cryo-focusing injection (HSCFI) system was constructed to first cryogenically focus analyte compounds in a 6 cm long section of metal MXT column, and second, reinject the focused analytes by rapidly resistively heating the metal column via an in-house built electronic circuit. Since the cryogenically cooled section of column is small (∼750 nl) and the direct resistive heating is fast (∼6000 °C/s), HSCFI is demonstrated to produce an analyte peak with a 6.3 ms width at half height, w 1/2 . This was achieved using a 1 m long column with a 180 μm inner diameter (i.d.) operated at an absolute head pressure of 55 psi and an oven temperature of 60 °C, with a 10 V pulse applied to the metal column for 50 ms. HSCFI was also used to demonstrate the head space sampling and fast GC analysis of an aqueous solution containing six test analytes (acetone, methanol, ethanol, toluene, chlorobenzene, pentanol). Using Henry’s law constants for each of the analytes, injected mass limits of detection (LODs) were typically in the low pg levels (e.g., 1.2 pg for acetone) for the high speed separation. Finally, to demonstrate the use of HSCFI with a complex sample, a gasoline was separated using a 20 m×100 μm i.d. column and the stock GC oven for temperature programming, which provided a separation time of 200 s and an average peak width at the base of 440 ms resulting in a total peak capacity of 460 peaks (at unit resolution).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    13
    Citations
    NaN
    KQI
    []