Atmospheric Carbon Dioxide and Electricity Production Due to Lockdown

2020 
We analyzed real-time measurements of atmospheric carbon dioxide (CO2), with total electricity production and nationwide restrictions phases in China, the United States of America, Europe, and India due to the novel coronavirus COVID-19 pandemic and its effects on atmospheric CO2. A decline of 3.7% in the global energy demand at about 150 million tonnes of oil equivalent (Mtoe) in the first quarter (Q1) of 2020 was recorded compared to Q1 2019 due to the cutback on international economic activities. Our results showed that: (1) electricity production for the same period in 2018, 2019, and 2020 shrunk at an offset of 9.20%, which resulted in a modest reduction (−1.79%) of atmospheric CO2 to the 2017–2018 CO2 level; (2) a non-seasonal, abrupt, and brief atmospheric CO2 decrease by 0.85% in mid-February 2020 could be due to Phase 1 restrictions in China. The results indicate that electricity production reduction is significant to the short-term variability of atmospheric CO2. It also highlights China’s significant contribution to atmospheric CO2, which suggests that, without the national restriction of activities, CO2 concentration is set to exceed 2019 by 1.79%. Due to the lockdown, it quickly decreased and sustained for two months. The results underscore atmospheric CO2 reductions on the monthly time scale that can be achieved if electricity production from combustible sources was slashed. The result could be useful for cost-benefit analyses on the decrease in electricity production of combustible sources and the impact of this reduction on atmospheric CO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []