Experimental Design Strategy: Weak Reinforcement Leads to Increased Hit Rates and Enhanced Chemical Diversity

2015 
High Throughput Screening (HTS) is a common approach in life sciences to discover chemical matter that modulates a biological target or phenotype. However, low assay throughput, reagents cost, or a flowchart that can deal with only a limited number of hits may impair screening large numbers of compounds. In this case, a subset of compounds is assayed, and in silico models are utilized to aid in iterative screening design, usually to expand around the found hits and enrich subsequent rounds for relevant chemical matter. However, this may lead to an overly narrow focus, and the diversity of compounds sampled in subsequent iterations may suffer. Active learning has been recently successfully applied in drug discovery with the goal of sampling diverse chemical space to improve model performance. Here we introduce a robust and straightforward iterative screening protocol based on naive Bayes models. Instead of following up on the compounds with the highest scores in the in silico model, we pursue compounds wi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    15
    Citations
    NaN
    KQI
    []