Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy

2019 
Abstract Drug delivery using synthetic mesoporous nanomaterials, including porous silicon, has been extensively used to ameliorate the constraints currently experienced with conventional chemotherapy. Owing to the amazing potential, the silica based nanomaterials have been used widely. Nevertheless, synthetic nanomaterial involves high cost, lack of scalability, and the use of toxic substances limits its utilization. These issues can be overcome by the use of nature generated nanoscale materials, such as diatoms would serve as a boon for pharmaceutical industries. In this study we investigate the use of a mesoporous, biodegradable nanomaterial obtained from the natural silica found in the diatom species Amphora subtropica (AMPS) for drug delivery applications. AMPS cultures cleaned and chemically treated to obtain Amphora frustules (exoskeleton) (AF), followed by surface functionalization with chitosan (Chi). Results of our experiments demonstrate high drug loading, strong luminescence, biodegradable and biocompatible nature of the doxorubicin tethered diatom. Further, toxicity studies employing immortalized lung cancer cell line (A549) indicates sustained drug delivery and less toxic compared to the free doxorubicin (DOX), suggesting AF could be an excellent substitute for synthetic nanomaterials used in drug delivery applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    8
    Citations
    NaN
    KQI
    []