Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS2

2018 
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with layered structures provide a unique platform for exploring the effect of number of layers on their fundamental properties. However, the thickness scaling effect on the chemical properties of these materials remains unexplored. Here, we explored the chemically induced phase transition of 2D molybdenum disulfide (MoS2) from both experimental and theoretical aspects and observed that the critical electron injection concentration and the duration required for the phase transition of 2D MoS2 increased with decreasing number of layers. We further revealed that the observed dependence originated from the layer-dependent density of states of 2H-MoS2, which results in decreasing phase stability for 2H-MoS2 with increasing number of layers upon electron doping. Also, the much larger energy barrier for the phase transition of monolayer MoS2 induces the longer reaction time required for monolayer MoS2 as compared to multilayer MoS2. The layer-dependen...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    45
    Citations
    NaN
    KQI
    []