Boronate Affinity-Based Oriented and Double-Shelled Surface Molecularly Imprinted Polymers on 96-Well Microplates for a High-Throughput Pharmacokinetic Study of Rutin and Its Metabolites

2021 
The boronate affinity-based oriented and double-shelled surface molecularly imprinted polymers on 96-well microplates (BDMIPs) were designed and applied to high-specific and high-throughput pharmacokinetic (PK) study of rutin and its metabolites from rat plasma without concentration and redissolution. It integrated the advantages of covalent effects-based boronate affinity, noncovalent effects of ethylene imine polymer (PEI) dendrimer, multiple cavities-based double-shelled layers, and multiparallel wells-based 96-well microplates. Furthermore, ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to accurately quantify targets. It showed lower limits of detection (LODs) up to 100-fold than the conventional method. And PKs of rutin and trace isoquercetin (IQC) were first reported at the same time. The platform can provide a fast, simple, low-cost, high-selective, high-effective, and high-throughput methodological reference for analysis of large-scale samples in the fields of agriculture and food.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []