Analysis of Joule heating in a chemically reactive flow of time dependent Carreau-nanofluid over an axisymmetric radially stretched sheet using Cattaneo–Christov heat flux model

2021 
This paper concentrates on the examination of mass and heat transfer on a time-dependent hydromagnetic flow of Carreau-nanofluid on a radially stretchable surface. The heat equation is modeled by the incorporation of modified heat flux recognized as the Cattaneo–Christov heat flux theory along with the Joule heating. Also, for nanofluid flow, the Buongiornos model is employed to investigate the impacts of thermophoresis parameter and Brownian motion. In addition, a first-order chemical reaction is also assumed in the nanoparticle concentration equation. Flow phenomena are developed mathematically by considering momentum, nanoparticle concentration, and energy equations by utilizing conveniently transformed variables. Numerical solutions of the obtained differential equation are computed by employing the shooting method for thermal relaxation and chemical reaction parameters as shear thinning and shear thickening fluids. The consequences of various physical parameters on the flow, energy, and nanoparticle concentration are investigated and discussed via graphs and tables. Also, the variation in wall heat flux and wall mass flux are computed numerically. The present analysis admits that the temperature and the associated thermal boundary layer thickness are the growing functions of thermal relaxation parameters for both shear thickening and shear-thinning fluids. The concentration of the nanoparticle is also decreasing the function of the chemical reaction parameter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []