Carbon nanotube-based lossy transmission line filter for superconducting qubit measurements

2019 
In superconducting qubit measurements, stray infrared photons lead to damping processes that degrade quantum coherence. In this Letter, we show that a thermal blocking filter made of multiwalled carbon nanotubes diluted in stainless steel powder can significantly improve the energy relaxation time, T1, and the pure dephasing time, T φ, of a qubit. By using two independent measurement lines, with and without the filter, and switching between them in situ, we observe that with the filter there is an increase of more than 61% in T1 and 291% in T φ. We characterize the filter, demonstrating that the scattering parameters remain stable down to 8 mK over a wide range of frequencies, spanning from 10 MHz to 50 GHz. We also show that the cutoff frequency of the filter is easily controlled by selecting the concentration of nanotubes.In superconducting qubit measurements, stray infrared photons lead to damping processes that degrade quantum coherence. In this Letter, we show that a thermal blocking filter made of multiwalled carbon nanotubes diluted in stainless steel powder can significantly improve the energy relaxation time, T1, and the pure dephasing time, T φ, of a qubit. By using two independent measurement lines, with and without the filter, and switching between them in situ, we observe that with the filter there is an increase of more than 61% in T1 and 291% in T φ. We characterize the filter, demonstrating that the scattering parameters remain stable down to 8 mK over a wide range of frequencies, spanning from 10 MHz to 50 GHz. We also show that the cutoff frequency of the filter is easily controlled by selecting the concentration of nanotubes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []