Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix) describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals. Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix) describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for several branches of electrical engineering, including electronics, communication systems design, and especially for microwave engineering. The S-parameters are members of a family of similar parameters, other examples being: Y-parameters, Z-parameters, H-parameters, T-parameters or ABCD-parameters. They differ from these, in the sense that S-parameters do not use open or short circuit conditions to characterize a linear electrical network; instead, matched loads are used. These terminations are much easier to use at high signal frequencies than open-circuit and short-circuit terminations. Moreover, the quantities are measured in terms of power. Many electrical properties of networks of components (inductors, capacitors, resistors) may be expressed using S-parameters, such as gain, return loss, voltage standing wave ratio (VSWR), reflection coefficient and amplifier stability. The term 'scattering' is more common to optical engineering than RF engineering, referring to the effect observed when a plane electromagnetic wave is incident on an obstruction or passes across dissimilar dielectric media. In the context of S-parameters, scattering refers to the way in which the traveling currents and voltages in a transmission line are affected when they meet a discontinuity caused by the insertion of a network into the transmission line. This is equivalent to the wave meeting an impedance differing from the line's characteristic impedance. Although applicable at any frequency, S-parameters are mostly used for networks operating at radio frequency (RF) and microwave frequencies where signal power and energy considerations are more easily quantified than currents and voltages. S-parameters change with the measurement frequency, so frequency must be specified for any S-parameter measurements stated, in addition to the characteristic impedance or system impedance. S-parameters are readily represented in matrix form and obey the rules of matrix algebra. The first published description of S-parameters was in the thesis of Vitold Belevitch in 1945. The name used by Belevitch was repartition matrix and limited consideration to lumped-element networks. The term scattering matrix was used by physicist and engineer Robert Henry Dicke in 1947 who independently developed the idea during wartime work on radar. The technique was popularized in the 1960s by Kaneyuki Kurokawa In the S-parameter approach, an electrical network is regarded as a 'black box' containing various interconnected basic electrical circuit components or lumped elements such as resistors, capacitors, inductors and transistors, which interacts with other circuits through ports. The network is characterized by a square matrix of complex numbers called its S-parameter matrix, which can be used to calculate its response to signals applied to the ports. For the S-parameter definition, it is understood that a network may contain any components provided that the entire network behaves linearly with incident small signals. It may also include many typical communication system components or 'blocks' such as amplifiers, attenuators, filters, couplers and equalizers provided they are also operating under linear and defined conditions.