Shear stress-mediated upregulation of GTP cyclohydrolase/tetrahydrobiopterin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells.

2017 
Objectives: Guanosine triphosphate cyclohydrolase/tetrahydrobiopterin (GTPCH)/(BH4) pathway has been proved to regulate the function of endothelial progenitor cells (EPCs) in deoxycorticosterone acetate–salt hypertensive mice, indicating that GTPCH/BH4 pathway may be an important repair target for hypertension-related endothelial injury. Shear stress is an important nonpharmacologic strategy to modulate the function of EPCs. Here, we investigated the effects of laminar shear stress on the GTPCH/BH4 pathway and endothelial repair capacity of circulating EPCs in hypertension. Method: Laminar shear stress was loaded on the human EPCs from hypertensive patients and normotensive patients. The in-vitro function, in-vivo reendothelialization capacity and GTPCH/BH4 pathway of human EPCs were evaluated. Results: Both in-vitro function and reendothelialization capacity of EPCs were lower in hypertensive patients than that in normotensive patients. The GTPCH/BH4 pathway of EPCs was downregulated in hypertensive patients. Shear stress increased in-vitro function and reendothelialization capacity of EPCs from hypertensive patients and normotensive patients. Furthermore, shear stress upregulated the expression of GTPCH I and levels of BH4, nitric oxide, and cGMP of EPCs, and reduced thrombospondin-1 expression. With treatment of GTPCH knockdown or nitroarginine methyl ester inhibition, shear stress-induced increased levels of BH4, nitric oxide and cGMP of EPCs was suppressed. When GTPCH/BH4 pathway of EPCs was blocked, the effects of shear stress on in-vitro function and reendothelialization capacity of EPCs were inhibited. Conclusion: The study demonstrates for the first time that shear stress-induced upregulation of the GTPCH/BH4 pathway ameliorates hypertension-related decline in endothelial repair capacity of EPCs. These findings provide novel nonpharmacologic therapeutic approach for hypertension-related endothelial repair.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    15
    Citations
    NaN
    KQI
    []