Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer's disease and cognitive functions.
2020
The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
84
References
8
Citations
NaN
KQI