Thermally induced spin polarization and thermal conductivities in a spin–orbit-coupled two-dimensional electron gas

2010 
Abstract The thermal conductivities and spin polarization induced by the temperature gradient are investigated in a Rashba spin–orbit-coupled two-dimensional electron gas. In this spin–orbit-coupled system in the presence of nonmagnetic or magnetic electron–impurity scattering, the Wiedemann–Franz law still holds. However, the spin polarization induced by the temperature gradient strongly depends on the property of impurities. The components of spin accumulation both perpendicular and parallel to the direction of the temperature gradient, and the thermally induced charge Hall conductivity may be nonzero for magnetic disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    15
    Citations
    NaN
    KQI
    []