Novel and low reflective silicon surface fabricated by Ni-assisted electroless etching and coated with atomic layer deposited Al2O3 film

2014 
In this paper, nickel nanoparticles (Ni NPs) were deposited on planar silicon and pyramidal silicon wafers by the magnetron sputtering method, and then these Ni NP-covered samples were etched in a hydrofluoric acid, hydrogen peroxide, and deionized water mixed solution at room temperature to fabricate a low reflective silicon surface. An alumina (Al2O3) film was then deposited on the surface of the as-etched pyramidal sample by atomic layer deposition to further reduce the reflectance. The morphologies and compositions of these samples were studied by using a field emission scanning electron microscope attached to an energy-dispersive X-ray spectrometer. The surface reflectance measurements were carried out with a UV-Vis-NIR spectrophotometer in a wavelength range of 200–1100 nm. The SEM images show that the as-etched planar and pyramidal silicon samples were covered with many rhombic nanostructures and that some nanostructures on the planar silicon surface were ready to exhibit a flower-like burst. The reflectances of the as-etched planar and pyramidal silicon samples were 5.22 % and 3.21 % in the wavelength range of 400–800 nm, respectively. After being coated with a 75-nm-thick Al2O3 film, the etched pyramidal silicon sample showed an even lower reflectance of 2.37 % from 400 nm to 800 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    10
    Citations
    NaN
    KQI
    []