language-icon Old Web
English
Sign In

Hydrofluoric acid

Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. It is a precursor to almost all fluorine compounds, including pharmaceuticals such as fluoxetine (Prozac), diverse materials such as PTFE (Teflon), and elemental fluorine itself. It is a colourless solution that is highly corrosive, capable of dissolving many materials, especially oxides. Its ability to dissolve glass has been known since the seventeenth century, even before Carl Wilhelm Scheele prepared it in large quantities in 1771. Because of its high reactivity toward glass and moderate reactivity toward many metals, hydrofluoric acid is usually stored in plastic containers (although PTFE is slightly permeable to it).H2O + HF ↽ − ⇀ {displaystyle {ce {<=>>}}}     (1) ↽ − ⇀ {displaystyle {ce {<<=>}}} H3O+ + F−    (2) Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. It is a precursor to almost all fluorine compounds, including pharmaceuticals such as fluoxetine (Prozac), diverse materials such as PTFE (Teflon), and elemental fluorine itself. It is a colourless solution that is highly corrosive, capable of dissolving many materials, especially oxides. Its ability to dissolve glass has been known since the seventeenth century, even before Carl Wilhelm Scheele prepared it in large quantities in 1771. Because of its high reactivity toward glass and moderate reactivity toward many metals, hydrofluoric acid is usually stored in plastic containers (although PTFE is slightly permeable to it). Hydrogen fluoride gas is an acute poison that may immediately and permanently damage lungs and the corneas of the eyes. Aqueous hydrofluoric acid is a contact-poison with the potential for deep, initially painless burns and ensuing tissue death. By interfering with body calcium metabolism, the concentrated acid may also cause systemic toxicity and eventual cardiac arrest and fatality. Unlike other hydrohalic acids, such as hydrochloric acid, hydrogen fluoride is only a weak acid in dilute aqueous solution. This is in part a result of the strength of the hydrogen–fluorine bond, but also of other factors such as the tendency of HF, H2O, and F− anions to form clusters. At high concentrations, HF molecules undergo homoassociation to form polyatomic ions (such as bifluoride, HF−2) and protons, thus greatly increasing the acidity. This leads to protonation of very strong acids like hydrochloric, sulfuric, or nitric when using concentrated hydrofluoric acid solutions. Although hydrofluoric acid is regarded as a weak acid, it is very corrosive, even attacking glass when hydrated. The acidity of hydrofluoric acid solutions varies with concentration owing to hydrogen-bond interactions of the fluoride ion. Dilute solutions are weakly acidic with an acid ionization constant Ka = 6.6×10−4 (or pKa = 3.18), in contrast to corresponding solutions of the other hydrogen halides, which are strong acids (pKa < 0). Concentrated solutions of hydrogen fluoride are much more strongly acidic than implied by this value, as shown by measurements of the Hammett acidity function H0(or 'effective pH'). The H0 for 100% HF is estimated to be between −10.2 and −11, comparable to the value −12 for sulfuric acid. In thermodynamic terms, HF solutions are highly non-ideal, with the activity of HF increasing much more rapidly than its concentration.The weak acidity in dilute solution is sometimes attributed to the high H—F bond strength, which combines with the high dissolution enthalpy of HF to outweigh the more negative enthalpy of hydration of the fluoride ion. However, Paul Giguère and Sylvia Turrell have shown by infrared spectroscopy that the predominant solute species is the hydrogen-bonded ion pair , which suggests that the ionization can be described as a pair of successive equilibria: The first equilibrium lies well to the right (K ≫ 1) and the second to the left (K ≪ 1), meaning that HF is extensively dissociated, but that the tight ion pairs reduce the thermodynamic activity coefficient of H3O+, so that the solution is effectively less acidic. In concentrated solution, the additional HF causes the ion pair to dissociate with formation of the hydrogen-bonded hydrogen difluoride ion. The increase in free H3O+ due to this reaction accounts for the rapid increase in acidity, while fluoride ions are stabilized (and become less basic) by strong hydrogen bonding to HF to form HF−2. This interaction between the acid and its own conjugate base is an example of homoassociation (homoconjugation). Hydrofluoric acid is produced by treatment of the mineral fluorite (CaF2) with concentrated sulfuric acid. When combined at 265 °C, these two substances react to produce hydrogen fluoride and calcium sulfate according to the following chemical equation:

[ "Nuclear chemistry", "Chemical engineering", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "HYDROFLUORIC ACID EXPOSURE", "Lithia disilicate", "Hexafluorine", "Hexafluorosilicic acid" ]
Parent Topic
Child Topic
    No Parent Topic