Growth arrest-specific protein 6 (Gas6) attenuates inflammatory injury and apoptosis in iodine-induced NOD.H-2h4 mice

2019 
Abstract Purpose Growth arrest-specific protein 6 (Gas6) is a vitamin K-dependent protein that plays an important role in the pathogenesis of autoimmune diseases. The purpose of this study was to explore the expression of Gas6 and its effects on autoimmune thyroiditis (AIT). Method A total of 24 male NOD.H-2 h4 mice were randomly assigned to three groups: (1) a control group supplied with regular water; (2) a sodium iodide (NaI) group supplied with 0.005% sodium iodide water; and (3) a group treated with recombinant mouse Gas6 (rmGas6) after iodine supplementation (NaI + Gas6 group). The severity of lymphocytic infiltration in the thyroid was measured through histopathology. Serum levels of tumor necrosis factor α (TNF-α), interleukin (IL) 6 and IL-1β, as well as anti-thyroglobulin antibody (TgAb) titers were measured using an enzyme-linked immunosorbent assay. In addition, the expression of Gas6, Caspase 3, TAM receptors (Axl and MerTK), nuclear factor κB (NF-κB) and I-kappa-B α (IκB-α) were measured by Western blotting. Finally, the proportions of T cells were determined in the splenocytes of NOD.H-2 h4 mice by flow cytometry. Results The mRNA and protein expression of Gas6 was significantly lower in the NaI group compared to the control group. Serum levels of TgAb, TNF-α, IL-6 and IL-1β were also significantly higher in the NaI group but were dramatically reduced after rmGas6 injection. The prevalence of thyroiditis and the infiltration of lymphocytes were significantly lower in the NaI + Gas6 group compared to the NaI group. The protein expression of cleaved-Caspase 3, phosphorylation of MerTK, and NF-κB and IκB-α in the thyroid gland were significantly reduced after rmGas6 administration. The proportion of Th1, Th2 and Th17 cells in splenocytes were also significantly reduced after rmGas6 treatment, whereas there was a dramatic increase in the proportion of Treg cells. Conclusion Gas6 exerts an anti-inflammatory effect in a mouse model of AIT and may therefore be a potential therapeutic target.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []