Self-assembly of chitosan and cellulose chains into a 3D porous polysaccharide alloy films: Co-dissolving, structure and biological properties

2019 
Abstract Blending of plant-based cellulose and marine-derived chitosan in micro-level has potential to make fascinating materials. However, this task is frequently hindered by the poor solubility of the polysaccharides. Here, using a green alkali/urea solvent media together with a well-designed dissolving strategy, original cellulose pulp and chitosan power were dispersed into a homogeneous solution. Driven by the intermolecular hydrogen-bond interaction, cellulose and chitosan chains were facially self-assembled into a unique 3D alloy structure. Owing to the rich interface interactions, the tensile strength and breaking elongation of the alloy film increased by 69% and 260%, respectively, when compared to a pure chitosan film. Besides, the 3D alloy films with a pore diameter of 920–1435 nm exhibited an extremely high cell viability which was higher than 95%. Additionally, accelerated wound healing rate of 95.6% reached in the presence of the alloy film after two weeks using a full-thickness wound in a rat model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    5
    Citations
    NaN
    KQI
    []