The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues.

2014 
Abstract The isobacteriochlorin heme d 1 serves as an essential cofactor in the cytochrome cd 1 nitrite reductase NirS that plays an important role for denitrification. During the biosynthesis of heme d 1 , the enzyme siroheme decarboxylase catalyzes the conversion of siroheme to 12,18-didecarboxysiroheme. This enzyme was discovered recently (Bali S, Lawrence AD, Lobo SA, Saraiva LM, Golding BT, Palmer DJ et al. Molecular hijacking of siroheme for the synthesis of heme and d 1 heme. Proc Natl Acad Sci USA 2011;108:18260–5) and is only scarcely characterized. Here, we present the crystal structure of the siroheme decarboxylase from Hydrogenobacter thermophilus representing the first three-dimensional structure for this type of enzyme. The overall structure strikingly resembles those of transcriptional regulators of the Lrp/AsnC family. Moreover, the structure of the enzyme in complex with a substrate analog reveals first insights into its active-site architecture. Through site-directed mutagenesis and subsequent biochemical characterization of the enzyme variants, two conserved histidine residues within the active site are identified to be involved in substrate binding and catalysis. Based on our results, we propose a potential catalytic mechanism for the enzymatic reaction catalyzed by the siroheme decarboxylase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    13
    Citations
    NaN
    KQI
    []