Iron–sulfur proteins as initiators of radical chemistry

2007 
Covering: January 1995 to August 2007 Iron–sulfur proteins are very versatile biological entities for which many new functions are continuously being unravelled. This review focus on their role in the initiation of radical chemistry, with special emphasis on ‘radical-SAM’ enzymes, since several members of the family catalyse key steps in the biosynthetic pathways of cofactors such as biotin, lipoate, thiamine, heme and the molybdenum cofactor. It will also include other examples to show the chemical logic which is emerging from the presently available data on this family of enzymes. The common step in all the (quite different) reactions described here is the monoelectronic reductive cleavage of SAM by a reduced [4Fe–4S]1+ cluster, producing methionine and a highly oxidising deoxyadenosyl radical, which can initiate chemically difficult reactions. This set of enzymes, which represent a means to perform oxidation under reductive conditions, are often present in anaerobic organisms. Some other, non-SAM-dependent, radical reactions obeying the same chemical logic are also covered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    30
    Citations
    NaN
    KQI
    []