From Simulation to Experiment: A Case Study on Multiprocessor Task Scheduling

2011 
Simulation is a popular approach for empirically evaluating the performance of algorithms and applications in the parallel computing domain. Most published works present results without quantifying simulation error. In this work we investigate accuracy issues when simulating the execution of parallel applications. This is a broad question, and we focus on a relevant case study: the evaluation of scheduling algorithms for executing mixed-parallel applications on clusters. Most such scheduling algorithms have been evaluated in simulation only. We compare simulations to real-world experiments in a view to identify which features of a simulator are most critical for simulation accuracy. Our first finding is that simple yet popular analytical simulation models lead to simulation results that cannot be used for soundly comparing scheduling algorithms. We then show that, by contrast, simulation models instantiated based on brute-force measurements of the target execution environment lead to usable results. Finally, we develop empirical simulation models that provide a reasonable compromise between the two previous approaches.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []